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SUMMARY

Over the last decade, the lattice Boltzmann method (LBM) has evolved into a valuable alternative
to continuum computational �uid dynamics (CFD) methods for the numerical simulation of several
complex �uid-dynamic problems. Recent advances in lattice Boltzmann research have considerably
extended the capability of LBM to handle complex geometries. Among these, a particularly remarkable
option is represented by cell-vertex �nite-volume formulations which permit LBM to operate on fully
unstructured grids. The two-dimensional implementation of unstructured LBM, based on the use of
triangular elements, has shown capability of tolerating signi�cant grid distortions without su�ering any
appreciable numerical viscosity e�ects, to second-order in the mesh size. In this work, we present the �rst
three-dimensional generalization of the unstructured lattice Boltzmann technique (ULBE as unstructured
lattice Boltzmann equation), in which geometrical �exibility is achieved by coarse-graining the lattice
Boltzmann equation in di�erential form, using tetrahedrical grids. This 3D extension is demonstrated
for the case of 3D pipe �ow and moderate Reynolds numbers �ow past a sphere. The results provide
evidence that the ULBE has signi�cant potential for the accurate calculation of �ows in complex 3D
geometries. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last decade lattice Boltzmann methods have undergone a major progress as an alterna-
tive to the discretization of the Navier–Stokes equations for the numerical solution of complex
�uid problems [1–3]. The original LB method is based on a minimal kinetic Boltzmann equa-
tion in which representative particles (‘parcels of �uids’) evolve on a regular Cartesian grid
according to simple streaming and collide rules, designed in such a way as to preserve the ba-
sic symmetries (conservation laws) of �uid dynamics. The simplicity of the stream-and-collide
dynamics makes LB very e�cient from the computational point of view. However, uniform
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Cartesian grids also represent a severe limitation for many practical engineering problems
involving real-life complex geometries, such as cars and airplanes. Therefore, in the recent
years, much research has been directed to the goal of enhancing the geometrical �exibility
of the LB method. Indeed, starting from the earliest �nite-volume formulations more than a
decade ago [4], today many options are available to deal with realistically complex geometries
[5–9]. A particularly interesting development is represented by �nite-volume formulations on
fully unstructured grids [10–15]. Unstructured lattice Boltzmann schemes (ULBE) integrate
the di�erential form of the lattice Boltzmann equation (LBE) using a cell-vertex �nite-volume
technique in which the unknown �elds are placed at the nodes of the mesh and evolve based
on the �uxes crossing the surfaces of the corresponding control volumes. These �nite-volume
formulations are best viewed as a coarse-grained version of the original LB dynamics, in
which geometrical �exibility is achieved at the level of the coarse-graining elements, whose
triangular shape (in two dimensions) can accommodate the most complex geometries. To date,
ULBE implementations were limited to two-dimensional problems. In this work, we present
the �rst three-dimensional generalization of the ULBE technique.

2. FORMULATION OF UNSTRUCTURED LBE IN THREE DIMENSIONS

The present �nite-volume formulation begins with the di�erential form of the single-time
relaxation lattice Boltzmann equation:

@tfi + ci · −→9 xfi=− (fi − feqi )=� (1)

Here fi(x; t)≡f(x; v= ci ; t), i=1; b, is the probability of �nding a particle at lattice site x at
time t, moving along the lattice direction de�ned by the discrete speed ci. The left-hand side
of this equation represents the molecular free-streaming, whereas the right-hand side represents
molecular collisions via a single-time relaxation towards local equilibrium feqi on a typical
timescale � [16]. This local equilibrium is a (local) Maxwellian expanded to second-order in
the �uid speed

feqi =�wi

[
1 + �ui +

�2

2
(u2i − u2)

]
(2)

where wi are weighting factors normalized to unit value, ui= u · ci and �=1=c2s , cs being the
lattice sound speed, de�ned by the equation c2s =

∑
i wic

2
i , (cs=1=

√
3 in the present work).

In the above

�=
∑
i
fi; u=

∑
i
cifi=�

are the �uid density and �ow velocity, respectively. Crucial to the LB hydrodynamics is the
momentum �ux tensor, de�ned as

P=
∑
i
cicifi

The equilibrium component of this tensor controls advection and pressure terms, while the
non-equilibrium part is in charge of describing dissipative e�ects.
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UNSTRUCTURED LATTICE BOLTZMANN METHOD IN THREE DIMENSIONS 621

In the original LB scheme the space-time discretization of the di�erential equation (1) is
performed through an explicit �nite di�erencing along the particle trajectories (straight lines
since the discrete speeds are constant). This yields the LBE

fi(x+ ci�t; t +�t)=fi(x; t)− �t
�
(fi − feqi ) (3)

In the limit of weak departures from local equilibrium, i.e. small Knudsen numbers, it can be
shown through a Chapman–Enskog analysis [1] that LBE recovers the dynamic behaviour of
a �uid with pressure p=�c2s and kinematic viscosity �= c

2
s (�−�t=2). In order to recover the

correct �uid dynamic equations in the macroscopic limit, the set of discrete speeds must satisfy
mass, momentum and energy conservation, as well as rotational symmetry. This amounts to
imposing the following constraints on the local equilibrium distribution:

∑
i
feqi = �

∑
i
feqi ci = �u

∑
i
feqi cici = �uu+ �c

2
s I

It should be noted that the local equilibria ful�lling such relation are second-order polynomials
in the velocity �eld, as opposed to the Maxwellian shape of local equilibria in the continuum.
Indeed, it can be shown that a discrete Maxwellian cannot ful�ll the above constraints. The
result is that LB is limited to quasi-incompressible, low-Mach number �ows, Ma= u=cs¡0:1.
Even so, only a limited class of lattices exhibits the right symmetry to ensure the conservation
constraints.
In the present work we shall refer to the three-dimensional nineteen-speed model (known

as D3Q19) de�ned by the following set of discrete speeds [16]: One zero-speed particle
(cell-centre), Six speed-1 particles (cell centre to face centres), Twelve speed 2 particles (cell
centre to edge centres), with weights w0 = 4

9 , w1 =
1
9 , w2 =

1
36 , respectively.

The main advantages of LB are its simplicity and amenability to parallel computing. In par-
ticular, owing to its kinetic nature, the pressure �eld and the stress tensor are locally available,
with no need of solving any (expensive) Poisson problem. In fact, it is readily checked that
the stress tensor Sab is related to the non-equilibrium component of the momentum �ux tensor
by the following local expression: Sab=

∑
i[ciacib−c2s �ab](fi−feqi ) a; b= x; y; z. Another key

property of LB is that non-linearities are local (quadratic dependence of the local equilibrium
on the �ow �eld) and the non-localities are linear because advection proceeds along constant,
straight lines de�ned by the discrete speeds ci. This is a very useful property, not shared by
the Navier–Stokes equations, in which non-linearity and non-locality come together into the
same u∇u term, that is, the �uid moves its own momentum along a space-time changing
direction de�ned by the �ow speed itself.
However, a recognized weakness of LB is its restriction to regular, uniform lattices (reg-

ular Cartesian grids). This limitation is particularly severe whenever high local resolution is
required, as is the case for most �ows of engineering interest. For instance, curved boundaries
must be approximated by staircase pro�les aligned with the gridline coordinates, an appro-
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ximation which can lead to severe inaccuracies for aerodynamic �ows, unless a sophisticated
treatment of the boundary is applied [17, 18]. This has motivated a wide body of research
aimed at extending the LB method to non-uniform grids with boundary conditions capable of
accommodating curved boundaries [4, 5]. Particularly interesting are recent attempts to formu-
late LB on a fully unstructured grids [10, 11, 13–15] using cell-vertex �nite-volume schemes.
To date, these formulations were limited to two-dimensional �ows. In this paper, we present

the �rst three-dimensional formulation and implementation of the ULBE method.

3. THREE-DIMENSIONAL LB ON UNSTRUCTURED GRIDS

In our approach the space discretization of the di�erential LBE (1) is performed by introducing
a tessellation based on tetrahedral elements. To each node P of the discrete grid, we associate
a set of b=19 discrete populations fi(P; t); i=0; 18, which represent the unknowns of the
problem. The set of K tetrahedra Tk(P), k=1; K , (see Figure 1) which share P as a common
vertex de�nes the �nite volume T (P) associated with node P. In the above, the connectivity
K is free to change from node to node.
Each of these K tetrahedra is de�ned by four vertices {P;Nj}, four triangular surfaces,

three of which Sh share P as a common vertex, and six edges, three of which Em emanate
from vertex P. The point Ok is the centre of the tetrahedron Tk , Em are the midpoints of the
edges Em and Sjl are the centres of surfaces Sh, identi�ed by nodes {P;Nj; Nl}.
Application of the Gauss theorem to each �nite volume �k yields the following set of

ordinary di�erential equations:

@tfi(P; t)=
1
VP

∑
k
(�ik − 	ik) (4)

Figure 1. Geometrical layout of the cell-vertex �nite volume discretization.
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where the sum k runs over the control volume �P obtained by joining the centres Ok with
points Sjl and Em. In the above, VP is the volume of �P=

⋃
k �k .

Finally, �ik and 	ik denote the �uxes associated with streaming and collision operators of
the ith population at the kth node, respectively. Note that �uxes over the internal surfaces
{PNjNl} are not included because they cancel out identically (ingoing �ux from a neighbour
volume=outgoing �ux to that same volume). Evaluation of the �uxes in Equation (4) requires
knowledge of the populations fi at the centre of the tetrahedron, edge midpoints, and centres
of the surfaces. These values are obtained by the following interpolation (index k omitted for
simplicity):

fi(O) =
fi(P) +

∑
j fi(Nj)

4
(5)

fi(Em) =
fi(P) + fi(Nm)

2
(6)

fi(Sjl) =
fi(P) + fi(Nj) + fi(Nl)

3
(7)

With these interpolation rules, the streaming �uxes read as follows:

�ik =
3∑
m=1

∑
l¿m


fi(Ok; Em; Sml)ci ·A(Ok; Em; Sml) (8)

where bar indicates arithmetic average 
f(P;Q; R)= (f(P) + f(Q) + f(R))=3. In the above
A(P;Q; R) stands for the vector oriented normally to the plane surface (triangle) PQR, and
magnitude equal to the area of the surface. The contribution of collisions arises from the
integration of the collision term (fi − feqi )=� over each volume �k

	ik =
∫
�k

(f′
i =�) dV (9)

where f′
i ≡fi − feqi . The resulting collisional �ux is computed by calculating the local

non-equilibrium distribution f′
i over �k via a linear interpolation. The resulting �nite-volume

equation takes the following general form (ULBE):

@tfi(P; t)=
K∑
k=0
Sikfi(Pk; t)− 1

�

K∑
k=0
Cik[fi(Pk; t)− feqi (Pk; t)] (10)

where index k=0 denotes the pivotal point P. The detailed expressions of the streaming and
collision matrices Sik and Cik are obtained by a straightforward application of the interpolation
rules 5. It is readily checked that for an internal node, surrounded by a closed control volume,
the following sum rules hold:

K∑
k=0
Sik =0;

K∑
k=0
Cik =1; ∀i
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3.1. Time marching

Time-marching proceeds according to the following sequence of explicit operator-splitting
steps:

1. Streaming: f̃i(P; t + dt)=fi(P; t) +
dt
V (P)

∑
k �ik(fi);

2. Update: feqi (P; t + dt) from f̃i(P; t + dt) according to Equation (2);
3. Collide: fi(P; t + dt)= f̃i(P; t + dt) +

dt
V (P)

∑
k 	ik(f̃i).

In two-dimensions, such time marching has been found to yield the following viscosity:

�= c2s �

This contrasts with standard LB, which features

�= c2s (�−�t=2)
The apparently innocent shift −�t=2 has far-reaching consequences for the computational
e�ciency of high-Reynolds �ow simulations. To appreciate the point, let us remind that, due
to the explicit treatment of the collision term, both LB and ULBE are subject to the stability
constraint

�t¡2�

Thanks to this shift (known as propagation viscosity), in LB one can achieve vanishingly
small viscosities �∼ �, with non-vanishing small timesteps, �t=2� − �, still within (linear)
stability constraints. Such a nice property is lost in ULBE, presumably on account of the
centred interpolation used to evaluate the �uxes. The result is that the timestep required to
achieve low viscosities �∼ � scales linearly with �, thus setting a very severe restriction on the
e�ciency of the method for high-Reynolds �ow simulations. It will be shown in the sequel
that the same problem remains in 3D.

4. BOUNDARY CONDITIONS

The �nite-volume procedure described above is applied to both internal and boundary nodes.
However, since the control volumes of boundary nodes do not close up, additional procedures
are required to handle them. Three strategies have been used to deal with boundary �uxes
at wall boundaries [10, 11, 13, 14]. In this work we have used the Covolume method. In the
covolume method, the �uxes across boundary surfaces are evaluated by explicit interpolation
at the boundary surfaces (see Figure 2)

�i(B)= 
fi(P; E1; S12)ci · A(P;E1; S12) + 
fi(P; E2; S12)ci · A(P;E2; S12)
For non-slip boundary conditions, the equilibrium populations at the boundary nodes are
computed as local equilibria with the wall speed u= uW. Free-slip boundary conditions are
implemented in the same way, but imposing un=0, where un is the �ow speed component
normal to the boundary surface. The tangential component is left free. At the inlet boundary a
prescribed velocity pro�le is imposed, whereas constant pressure is imposed at the outlet sec-
tions. Open boundaries are treated according to a straightforward three-dimensional extension
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Figure 2. Geometrical lay-out for a boundary node B.

Figure 3. Inlet=outlet boundary treatment: (a) prescribed velocity (pressure) pro�le and zero-longitudinal
pressure (velocity) gradient at inlet (outlet); and (b) bu�ers of uniform tetrahedra.

of the procedure developed in References [13, 14], that is by imposing the desired density and
importing the velocity from the closest interior nodes. In this procedure, the computational
domain is augmented with one (or more) bu�ers of uniform tetrahedra. The scope of these
regular bu�ers is to ensure that the last-but-one row of nodes faces with a corresponding
neighbour along the streamwise (z) direction, so that, by imposing the same value on these
two rows of nodes, a zero-longitudinal-gradient boundary condition is automatically ful�lled.
The three-dimensional case is more complicated because a regular cube (that is, a single cell
of the standard LB) is made up by six tetrahedra.
With reference to Figure 3, inlet(outlet) boundary conditions are realized by imposing

zero-longitudinal pressure(velocity) gradient condition as follows:

�(A)=�(I); u(O)= u(B)

where A(B) are the inlet(outlet) bu�er nodes.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:619–633



626 N. ROSSI ET AL.

5. NUMERICAL RESULTS

In order to validate the three-dimensional ULBE technique, we have simulated two cases of
practical interest: (i) pipe �ow and (ii) �ow past a sphere.

5.1. Pipe �ow

In order to measure the numerical viscosity of the three-dimensional ULBE, we have sim-
ulated a three-dimensional laminar pipe �ow. The �ow is driven by a volume force, F ,
acting along the streamwise direction, z, with an amplitude such to produce a Poiseuille �ow
with a prescribed centreline speed, Uc. The geometrical parameters are R=7:5 and L=20
for the radial and longitudinal dimensions of the cylinder, respectively. The simulation was
performed with 28 000 tetrahedra and 5400 nodes. It is to be noted that, thanks to the un-
structured grid, the circular boundary is represented to a great deal of accuracy (see Figure
4). No-slip boundary conditions are applied at the cylinder surface, while periodicity is im-
posed at inlet and outlet sections. The kinematic viscosity was �=0:01 corresponding to a
centreline Reynolds number Rec=UcR=�=45 for a Poiseuille �ow with a prescribed centre-
line speed, Uc=0:06. The numerical results are compared with the analytical solution uz(r)=
Uc(1− r2=R2), and the viscosity is read o� from the relation Uc=�FR2=4�.
In Figure 5 we show the longitudinal �ow speed as a function of the radial coordinate.

Excellent agreement with the analytical solution (solid line) is clearly visible.
Our data are consistent with the relation

�= c2s �

which is exactly the expression found in two dimensions. This support the idea that the lack
of propagation viscosity is due to centred interpolation.

Figure 4. The irregular grid on a two-dimensional cross-�ow section.
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Figure 5. Parabolic Poiseuille �ow: analytic versus numerical ULBE data.

5.2. Flow past a sphere

For the validation of the present numerical method, numerical simulations of the laminar �ow
past a sphere and comparisons with available literature data have been performed. Flow over
a sphere has been the subject of extensive research in both experimental and numerical �uid
dynamics [19–24] and, even though the geometry is very simple, it represents a hard test
for a numerical code, due to the three-dimensional nature of the �ow. The tests have been
performed at moderate Reynolds numbers, 10¡Re¡100, based on the free-stream velocity,
U∞, and sphere diameter, 2R0.
In terms of a unitary sphere radius, the channel is 30 units long and 15 units wide (square

section) in order to prevent outlet and free-slip boundary conditions from a�ecting the �ow
around the sphere. The sphere is positioned at a distance of 1

3 of the channel length from the
inlet section.
The unstructured grids used in the computations consist of a number of nodes in the

range 53 800–460 000 and 306 000–2 700 000 elements for Re=10 and 100, respectively. In
Figure 6 the latter grid and the coordinate system are shown. It should be noted that high
density of elements in the vicinity of the spherical surface permits a highly accurate repre-
sentation of the surface. This is particularly important for aerodynamic drag calculations, as
it shall be detailed below. Boundary conditions are as follows: no-slip covolume method at
the sphere surface, free-slip covolume method at wall boundaries and open-�ow conditions at
inlet and outlet sections (note additional bu�ers in Figure 6).
The �ow is impulsively started by forcing a uniform velocity pro�le at inlet and imposing

a prescribed pressure(density) at the outlet. Upon reaching steady-state, the drag coe�cient
is measured as

CD =
2Fz
�U 2∞A

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:619–633



628 N. ROSSI ET AL.

Figure 6. Coordinate system and unstructured grid near the sphere (Re=100); only two
2D projections of the grid are shown.

where A is the projection area of the sphere and Fz is the streamwise component of the
aerodynamic force acting on the sphere. Aerodynamic forces can be split into pressure and
friction contributions. Physically, both contributions trace back to the viscosity, but this dis-
tinction is very useful from the numerical point of view because while pressure contributions
are local, in a hydrodynamic (Navier–Stokes) representation, the friction contribution (viscous
stress tensor) requires the computation of the velocity gradients. As observed previously, the
LB approach has the useful property that the stress tensor is locally available as a linear com-
bination of the populations. However, this property is not fully exploited in the traditional
LB because the body surface does not generally lie on grid points, so that interpolations are
needed at the expense of loss of accuracy [5]. The advantage of ULBE is that no interpo-
lation is required because the body surface is fully represented by grid points. As a result,
in the ULBE formulation both pressure and viscous contributions are locally available in a
real sense. The numerical values of the drag coe�cient, computed as discussed above, are
reported in Figure 7.
From this �gure, over the range 10–100 of Reynolds numbers, the calculated drag coe�-

cients show good agreement with both numerical and experimental data [19–22].

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:619–633



UNSTRUCTURED LATTICE BOLTZMANN METHOD IN THREE DIMENSIONS 629

Figure 7. Computed drag coe�cient at Re=10; 20; 40; 60; 80 and 100: compar-
ison with literature data [19–22].

Figure 8. Flow pro�le Uz(z) at Re=10.

In Figures 8 and 9 we show the longitudinal �ow speed uz as a function of the streamwise
coordinates z and y at Re=10. The results compare satisfactorily with previous numerical
simulations based on lattice Boltzmann formulations with curvilinear coordinates [25].
Figure 10 shows the pressure coe�cient

CP=
2(P − P∞)
�U 2∞
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Figure 9. Flow pro�le Uz(y) at Re=10.

Figure 10. Comparison between the numerically calculated pressure coe�cient pro�le and
literature data [23, 24], at Re=100.

as a function of the angular coordinate, � (see Figure 6), at Re=100. Again the pressure
coe�cient trend has been compared to numerical data found in literature [23, 24] and the
agreement is excellent. In order to emphasize the sensitivity of CP to the radial location of
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Figure 11. Pressure coe�cient pro�le at di�erent radial locations at Re=100.

Table I. Comparison of computed results of �ow past a sphere with literature data [22–24], at a
Reynolds number of 100.

[23] [24] [22] Present

Cd 1 1.07 1.09 1.05
�s 53.5 55 52.3 54.4
lw=D 0.86 0.93 0.87 0.92

the probes, R, this quantity is plotted as a function of � for various radial locations R=R0. The
data in Figure 11 clearly show that a signi�cant relative departure can be observed, depending
on the radial location of the probes. This again points to the importance of locating the probes
right on the spherical surface.
A very good agreement with literature data [22–24] has been also observed in terms of

separation angle measured from the rear stagnation point (lw=D) and length of the stand-
ing eddy (�s) measured from the base of the sphere, as shown for Re=100 in
Table I.
Finally, in Figure 12, we show a pictorial view of details of the �ow structure past the

sphere. The calculated velocity �eld and streamlines pattern reveal completely unsteady three-
dimensional phenomena even at these low Reynolds numbers. In particular, the existence
of a toroidal vortex past the sphere is clearly detected. This is in agreement with previous
observations and numerical simulations [19–22]. The �ow is still axisymmetric, since, as
well-documented in literature [19–22], the sphere wake in a uniform �ow remains axisym-
metric up to a Reynolds number of about 210. Fine-scale details of microvorticity in the
near-vicinity of the surface are also captured in the simulation, as shown in
Figure 12.
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Figure 12. Di�erent views of the velocity �eld and streamlines past a sphere at Re=100.

6. SUMMARY AND FUTURE DIRECTIONS

Summarizing, we have extended the unstructured lattice Boltzmann method to fully three-
dimensional �ows.
The 3D ULBE method has been calibrated for the case of a laminar pipe �ow, and success-

fully demonstrated for the �ow past a sphere at Reynolds numbers up to Re=100. Although
much validation work remains to be done in order to put three-dimensional ULBE on a solid
ground, the present results look encouraging. In particular, since the update of a single node
takes roughly 4–5 more CPU time than for a standard LB method, computational savings are
expected whenever the number of grid nodes can be reduced by, say, an order of magnitude
as compared to Cartesian grids. Whether or not such a reduction can be achieved depends of
course on the geometrical complexity of the problem at hand, but it is reasonable to expect
that for highly complex geometries, such as, say, underhood �ows for automotive applications,
ULBE should indeed o�er a signi�cant potential. However, a number of limitations remain to
be lifted in order to realize this potential. To date, the major limitation is the adverse scaling
of the time-step with the inverse of Reynolds number. As previously discussed, this results
from the lack of propagation viscosity. In order to reinstate a negative propagation viscosity,
numerical interpolation should be designed so as to preserve the Lagrangian structure of the
original LB space–time di�erencing. To the best of our knowledge, the only �nite-volume
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scheme which achieves this goal is the volumetric scheme of Chen [17, 18]. Unfortunately,
the implementation of such a scheme for arbitrary three-dimensional geometries seems very
demanding. A viable compromise may be provided by low-viscous upwind schemes. Work
along these lines is currently in progress.
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